论文标题
palatini $ f(r,t)$重力理论中的Gödel和Gödel-type解决方案
Gödel and Gödel-type solutions in the Palatini $f(R,T)$ gravity theory
论文作者
论文摘要
考虑了palatini $ f(r,t)$重力理论。标准的爱因斯坦 - 希尔伯特(Einstein-Hilbert)动作被RICCI标量$ r $的任意功能和能量巨头张量的痕量$ t $的任意功能所取代。在Palatini方法中,RICCI标量是公制和连接的函数。这两个量,即公制和连接,被视为独立变量。然后,检查了palatini $ f(r,t)$重力理论是否允许解决因果关系的解决方案。考虑了Gödel和Gödel-type空间时间。此外,计算了一个临界半径,该半径允许检查违反因果关系的限制。结果表明,对于不同的物质含量,可以在这种palatini重力理论中避免非毒物溶液。
The Palatini $f(R,T)$ gravity theory is considered. The standard Einstein-Hilbert action is replaced by an arbitrary function of the Ricci scalar $R$ and of the trace $T$ of the energy-momentum tensor. In the Palatini approach, the Ricci scalar is a function of the metric and the connection. These two quantities, metric and connection, are taken as independents variables. Then, it is examined whether Palatini $f(R,T)$ gravity theory allows solutions in which lead to violation of causality. The Gödel and Gödel-type space-times are considered. In addition, a critical radius, which permits to examine limits for violation of causality, is calculated. It is shown that, for different matter contents, non-causal solutions can be avoided in this Palatini gravitational theory.