论文标题
没有正方形差异的新的上限
A new upper bound for sets with no square differences
论文作者
论文摘要
我们表明,如果$ a \ subset \ {1,\ ldots,n \} $没有解决$ a-b = n^2 $的解决方案,则$ a,b \ in $ and b in $ and $ n \ geq 1 $ the \ [| a | a | \ ll \ ll \ frac {n} $ C> 0 $。 Pintz-Steiger-Szemerédi的结果改善了。
We show that if $A\subset \{1,\ldots,N\}$ has no solutions to $a-b=n^2$ with $a,b\in A$ and $n\geq 1$ then \[|A|\ll \frac{N}{(\log N)^{c\log\log \log N}}\] for some absolute constant $c>0$. This improves upon a result of Pintz-Steiger-Szemerédi.