论文标题
软材料门学模型的迭代分裂方案
Iterative splitting schemes for a soft material poromechanics model
论文作者
论文摘要
我们讨论了针对柔软材料特别适用的门能模型的数值求解器,因为它通常尊重热力学原理和能量平衡。考虑到问题的多物理性质,涉及固体和流体物种,基于质量平衡和动量保护,我们决定基于迭代分裂方案采用离散问题的解决方案策略。由于该模型相似(但不等同于生物力学问题),因此我们遵循有关后者方程式求解器的丰富文献,开发了两种类似于Biot模型的众所周知的未压力和固定压力分裂的方法。对提出的方案进行了彻底的收敛分析。特别是,在广义梯度流的框架中开发并分析了不排水的分裂,而固定压力的分裂被理解为块 - diagonal $ l^2 $ type稳定化,并通过相对稳定性分析进行分析。此外,建议使用安德森加速度的应用,从而提高了分裂方案的鲁棒性。最后,我们在不同的基准测试上测试了这些方法,并且还将它们的性能相对于整体方法进行了比较。与理论分析一起,数值示例提供了指南,以适当选择应使用哪种分型方案来解决软材料门学模型的现实应用。
We address numerical solvers for a poromechanics model particularly adapted for soft materials, as it generally respects thermodynamics principles and energy balance. Considering the multi-physics nature of the problem, which involves solid and fluid species, interacting on the basis of mass balance and momentum conservation, we decide to adopt a solution strategy of the discrete problem based on iterative splitting schemes. As the model is similar (but not equivalent to) the Biot poromechanics problem, we follow the abundant literature for solvers of the latter equations, developing two approaches that resemble the well known undrained and fixed-stress splits for the Biot model. A thorough convergence analysis of the proposed schemes is performed. In particular, the undrained-like split is developed and analyzed in the framework of generalized gradient flows, whereas the fixed-stress-like split is understood as block-diagonal $L^2$-type stabilization and analyzed by means of a relative stability analysis. In addition, the application of Anderson acceleration is suggested, improving the robustness of the split schemes. Finally, we test these methods on different benchmark tests, and we also compare their performance with respect to a monolithic approach. Together with the theoretical analysis, the numerical examples provide guidelines to appropriately choose what split scheme shall be used to address realistic applications of the soft material poromechanics model.