论文标题

使用马尔可夫决策过程进行福利优化的社区储能管理

Community Energy Storage Management for Welfare Optimization Using a Markov Decision Process

论文作者

Deng, Lirong, Zhang, Xuan, Yang, Tianshu, Sun, Hongbin, Oren, Shmuel S.

论文摘要

在本文中,我们解决了在随机可再生环境下实时电力市场中社区储能的最佳管理问题。在实时电力市场中,可能无法评估完整的市场信息,因此我们提出了一种使用部分信息的范式,该范式使用了部分信息,包括实时价格的预测以及总供应曲线的斜率,以建模存储使用价格在价格制造商存储管理问题中的价格影响。作为价格制造商,社区储能不仅可以通过能源套利来赚取利润,而且还可以平稳的价格轨迹并进一步影响社会福利。我们将问题提出为有限的马尔可夫决策过程,旨在最大程度地提高基于生产者的社区的能源套利和社会福利。管理方案的进步是最佳策略具有阈值结构。该结构具有一种分析形式,可以通过比较其当前的边际值和预期的未来边缘值来指导储能来充电/排放。案例研究表明,福利最大化存储比利润最大化存储的收益更多。提出的基于阈值的算法可以保证最佳性,并在很大程度上降低了标准随机动态编程的计算复杂性。

In this paper, we address an optimal management problem of community energy storage in the real-time electricity market under a stochastic renewable environment. In a real-time electricity market, complete market information may not be assessable for a strategic participant, hence we propose a paradigm that uses partial information including the forecast of real-time prices and slopes of the aggregate supply curve to model the price impact of storage use in the price-maker storage management problem. As a price maker, the community energy storage can not only earn profits through energy arbitrage but also smooth price trajectories and further influence social welfare. We formulate the problem as a finite-horizon Markov decision process that aims to maximize the energy arbitrage and social welfare of the prosumer-based community. The advance of the management scheme is that the optimal policy has a threshold structure. The structure has an analytic form that can guide the energy storage to charge/discharge by comparing its current marginal value and the expected future marginal value. Case studies indicate that welfare-maximizing storage earns more benefits than profit-maximizing storage. The proposed threshold-based algorithm can guarantee optimality and largely decrease the computational complexity of standard stochastic dynamic programming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源