论文标题
通过约束优化投影在模型减少动态系统中保留一般的物理特性
Preserving general physical properties in model reduction of dynamical systems via constrained-optimization projection
论文作者
论文摘要
模型还原技术旨在通过应用(PETROV-)Galerkin投影过程来降低模拟动态系统的计算复杂性,从而在原始状态空间的低维子空间中强制执行动力学进化。通常,所产生的降级模型(ROM)违反了原始全阶模型(FOM)的内在物理特性(例如,全球保护,拉格朗日结构,州可变性界限),因为投影过程通常不能确保保留这些属性。但是,在许多应用中,确保ROM保留这种内在属性可以使ROM能够保持物理含义并提高准确性和稳定性。在这项工作中,我们为基于投影的模型还原提供了一种一般约束优化公式,该公式可用作模板,以实施ROM以满足运动学和动力学上的特定属性。我们在时间连续的盖尔金投影和时间差异水平上引入了限制的(即ode)水平的约束优化公式,这会导致最小二乘PETROV-GALERKERKILKIN(LSPG)投影。我们证明了所提出的配方使ROM具有所需特性的能力,例如全球能量保护和总变化的界限。
Model-reduction techniques aim to reduce the computational complexity of simulating dynamical systems by applying a (Petrov-)Galerkin projection process that enforces the dynamics to evolve in a low-dimensional subspace of the original state space. Frequently, the resulting reduced-order model (ROM) violates intrinsic physical properties of the original full-order model (FOM) (e.g., global conservation, Lagrangian structure, state-variable bounds) because the projection process does not generally ensure preservation of these properties. However, in many applications, ensuring the ROM preserves such intrinsic properties can enable the ROM to retain physical meaning and lead to improved accuracy and stability properties. In this work, we present a general constrained-optimization formulation for projection-based model reduction that can be used as a template to enforce the ROM to satisfy specific properties on the kinematics and dynamics. We introduce constrained-optimization formulations at both the time-continuous (i.e., ODE) level, which leads to a constrained Galerkin projection, and at the time-discrete level, which leads to a least-squares Petrov-Galerkin (LSPG) projection, in the context of linear multistep schemes. We demonstrate the ability of the proposed formulations to equip ROMs with desired properties such as global energy conservation and bounds on the total variation.