论文标题
通过贝叶斯深网加速MCMC算法
Accelerating MCMC algorithms through Bayesian Deep Networks
论文作者
论文摘要
马尔可夫链蒙特卡洛(MCMC)算法通常用于从复杂的概率分布中取样中的多功能性。但是,随着分布的尺寸越来越大,对抽样空间进行令人满意的探索的计算成本变得具有挑战性。采用建议分配选择的自适应MCMC方法可以解决加速融合的问题。在本文中,我们通过将贝叶斯神经网络的结果作为马尔可夫链的初步提案,展示了执行自适应MCMC的另一种方法。这种合并的方法提高了大都市狂热算法的接受率,并在达到相同的最终准确性的同时加速了MCMC的收敛性。最后,我们通过直接从宇宙微波背景图约束宇宙学参数来证明这种方法的主要优势。
Markov Chain Monte Carlo (MCMC) algorithms are commonly used for their versatility in sampling from complicated probability distributions. However, as the dimension of the distribution gets larger, the computational costs for a satisfactory exploration of the sampling space become challenging. Adaptive MCMC methods employing a choice of proposal distribution can address this issue speeding up the convergence. In this paper we show an alternative way of performing adaptive MCMC, by using the outcome of Bayesian Neural Networks as the initial proposal for the Markov Chain. This combined approach increases the acceptance rate in the Metropolis-Hasting algorithm and accelerate the convergence of the MCMC while reaching the same final accuracy. Finally, we demonstrate the main advantages of this approach by constraining the cosmological parameters directly from Cosmic Microwave Background maps.