论文标题

动力学信息神经网络

Kinetics-Informed Neural Networks

论文作者

Gusmão, Gabriel S., Retnanto, Adhika P., da Cunha, Shashwati C., Medford, Andrew J.

论文摘要

化学动力学和反应工程由现象学框架组成,用于解散反应机制,反应性能的优化和化学过程的合理设计。在这里,我们利用馈送人工神经网络作为基础函数来求解由描述微动力模型(MKMS)的差分代数方程(DAE)约束的普通微分方程(ODE)。我们提出了一个代数框架,用于对反应网络,基本反应类型和化学物种的数学描述和分类。在此框架下,我们证明了在正则化的多目标优化设置中同时训练神经网和动力学模型参数,从而通过从合成实验数据中估算动力学参数来解决逆问题的解决方案。我们分析了一组方案,以确定可以从瞬态动力学数据中检索动力学参数的程度,并评估该方法在统计噪声方面的鲁棒性。这种逆动力学ODE的方法可以帮助阐明基于瞬态数据的反应机制。

Chemical kinetics and reaction engineering consists of the phenomenological framework for the disentanglement of reaction mechanisms, optimization of reaction performance and the rational design of chemical processes. Here, we utilize feed-forward artificial neural networks as basis functions to solve ordinary differential equations (ODEs) constrained by differential algebraic equations (DAEs) that describe microkinetic models (MKMs). We present an algebraic framework for the mathematical description and classification of reaction networks, types of elementary reaction, and chemical species. Under this framework, we demonstrate that the simultaneous training of neural nets and kinetic model parameters in a regularized multi-objective optimization setting leads to the solution of the inverse problem through the estimation of kinetic parameters from synthetic experimental data. We analyze a set of scenarios to establish the extent to which kinetic parameters can be retrieved from transient kinetic data, and assess the robustness of the methodology with respect to statistical noise. This approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on transient data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源