论文标题
先前的流量变异自动编码器:非侵入性负载监控的密度估计模型
Prior Flow Variational Autoencoder: A density estimation model for Non-Intrusive Load Monitoring
论文作者
论文摘要
非侵入性负载监控(NILM)是一种计算技术,可从单米测量的整个消耗中估算功率载荷的逐个设备。在本文中,我们提出了一个基于深神经网络的条件密度估计模型,该模型与有条件的变异自动编码器一起使用有条件的可逆归一化流量模型,以估计单个设备的功率需求。所得模型称为先验流量自动编码器或为简单性PFVAE。因此,由此产生的模型不是每个设备都有一个模型,而是立即估算电源需求,逐一估算。我们在由位于巴西的家禽饲料工厂采取的公开数据集中训练和评估我们提出的模型。通过比较获得的标准化分解误差(NDE)和信号汇总误差(SAE)与同一数据集上的先前工作值来评估所提出的模型的质量。我们的提案取得了高度竞争的结果,对于属于数据集的八台机器中的六台,我们观察到一致的改进,从NDE的28%到81%,从27%到SAE的86%。
Non-Intrusive Load Monitoring (NILM) is a computational technique to estimate the power loads' appliance-by-appliance from the whole consumption measured by a single meter. In this paper, we propose a conditional density estimation model, based on deep neural networks, that joins a Conditional Variational Autoencoder with a Conditional Invertible Normalizing Flow model to estimate the individual appliance's power demand. The resulting model is called Prior Flow Variational Autoencoder or, for simplicity PFVAE. Thus, instead of having one model per appliance, the resulting model is responsible for estimating the power demand, appliance-by-appliance, at once. We train and evaluate our proposed model in a publicly available dataset composed of power demand measures from a poultry feed factory located in Brazil. The proposed model's quality is evaluated by comparing the obtained normalized disaggregation error (NDE) and signal aggregated error (SAE) with the previous work values on the same dataset. Our proposal achieves highly competitive results, and for six of the eight machines belonging to the dataset, we observe consistent improvements that go from 28% up to 81% in NDE and from 27% up to 86% in SAE.