论文标题

使用燃烧噪声特征和机器学习的低温火箭推室中热声不稳定性的早期检测

Early Detection of Thermoacoustic Instabilities in a Cryogenic Rocket Thrust Chamber using Combustion Noise Features and Machine Learning

论文作者

Waxenegger-Wilfing, Günther, Sengupta, Ushnish, Martin, Jan, Armbruster, Wolfgang, Hardi, Justin, Juniper, Matthew, Oschwald, Michael

论文摘要

燃烧不稳定性对于火箭推室尤其有问题,因为它们的高能量释放速率和接近结构限制的运行。在过去的几十年中,在预测高振幅燃烧不稳定性方面取得了进展,但仍然没有提供可靠的预测能力。可靠的预警信号是主动燃烧控制系统的主要要求。在本文中,我们提出了一种数据驱动的方法,用于早期检测热声不稳定性。复发定量分析用于计算动态压力传感器数据的短长度时间序列的特征燃烧特征。诸如复发率之类的功能用于训练支持向量机,以检测不稳定的发作,并提前几百毫秒。对所提出的方法的性能研究了来自代表性LOX/H $ _2 $研究推力室的实验数据。在大多数情况下,该方法能够及时预测未用于训练的测试数据上的两种类型的热声不稳定性。将结果与最先进的预警指标进行了比较。

Combustion instabilities are particularly problematic for rocket thrust chambers because of their high energy release rates and their operation close to the structural limits. In the last decades, progress has been made in predicting high amplitude combustion instabilities but still, no reliable prediction ability is given. Reliable early warning signals are the main requirement for active combustion control systems. In this paper, we present a data-driven method for the early detection of thermoacoustic instabilities. Recurrence quantification analysis is used to calculate characteristic combustion features from short-length time series of dynamic pressure sensor data. Features like the recurrence rate are used to train support vector machines to detect the onset of an instability a few hundred milliseconds in advance. The performance of the proposed method is investigated on experimental data from a representative LOX/H$_2$ research thrust chamber. In most cases, the method is able to timely predict two types of thermoacoustic instabilities on test data not used for training. The results are compared with state-of-the-art early warning indicators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源