论文标题

集体凝聚力中的信息流程模式

Modes of Information Flow in Collective Cohesion

论文作者

Sattari, Sulimon, Basak, Udoy S., James, Ryan G., Crutchfield, James P., Komatsuzaki, Tamiki

论文摘要

个人之间的成对相互作用被视为负责群体凝聚力和决策的集体行为的基本驱动力。尽管一个人直接影响少数邻居,但随着时间的流逝,间接影响会渗透到更大的群体。牢固的问题是,这种影响的传播如何影响集体。一个或几个人通常被确定为领导者,比其他人更具影响力。转移熵和时间延迟的互信息用于识别潜在的不对称相互作用,例如在聚集的个体中的领导者 - 追随者分类(细胞,鸟类,鱼类和动物)。但是,这些混合了个体之间不同的信息流的不同功能模式。计算信息测量在多个代理上的条件需要正确采样概率分布,其尺寸呈指数增长,而限制的代理数量则在上面。我们采用简单的相互作用的自我螺旋体粒子模型,研究了使用时间延迟的相互信息和转移熵的陷阱,以量化从领导者到追随者的影响力强度。令人惊讶的是,即使对于两个相互作用的粒子,也必须警惕这些陷阱。作为替代方案,我们将转移熵和时间延迟的互信息分解为信息流的内在,共享和协同模式。结果不仅正确地揭示了潜在的有效相互作用,而且还促进了对单个相互作用如何导致集体行为的更详细诊断。这揭示了个人和小组记忆在集体行为中的作用。此外,我们在多代理系统中证明了一对代理之间分解信息模式的知识如何揭示多体相互作用的性质,而无需对其他代理进行调节。

Pairwise interactions between individuals are taken as fundamental drivers of collective behavior responsible for group cohesion and decision-making. While an individual directly influences only a few neighbors, over time indirect influences penetrate a much larger group. The abiding question is how this spread of influence comes to affect the collective. One or a few individuals are often identified as leaders, being more influential than others. Transfer entropy and time-delayed mutual information are used to identify underlying asymmetric interactions, such as leader-follower classification in aggregated individuals--cells, birds, fish, and animals. However, these conflate distinct functional modes of information flow between individuals. Computing information measures conditioning on multiple agents requires the proper sampling of a probability distribution whose dimension grows exponentially with the number of agents being conditioned on. Employing simple models of interacting self-propelled particles, we examine the pitfalls of using time-delayed mutual information and transfer entropy to quantify the strength of influence from a leader to a follower. Surprisingly, one must be wary of these pitfalls even for two interacting particles. As an alternative we decompose transfer entropy and time-delayed mutual information into intrinsic, shared, and synergistic modes of information flow. The result not only properly reveals the underlying effective interactions, but also facilitates a more detailed diagnosis of how individual interactions lead to collective behavior. This exposes the role of individual and group memory in collective behaviors. In addition, we demonstrate in a multi-agent system how knowledge of the decomposed information modes between a single pair of agents reveals the nature of many-body interactions without conditioning on additional agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源