论文标题
通过固定的弹性介质传播波浪
Transmission of waves through a pinned elastic medium
论文作者
论文摘要
我们研究了弹性波的散射,从一维随机相位正弦模型描述的无序区域中的散射。集体固定导致具有通用和非高斯相关性的有效静态疾病潜力,作用于传播波。我们发现波动传输中相关性的签名在较大的频率范围内,涵盖了弱和强的定位状态。我们的理论阐明了在任何天然或合成弹性培养基中发生的集体挑战相的动力学。后者用一维的约瑟夫森连接阵列来举例说明,我们为此指定了结果。获得的结果为启用阵列的量子模拟提供了基准,该量子模拟解决了单个固定和量子玻色玻璃的更广泛且尚未开发的域中的动力学。
We investigate the scattering of elastic waves off a disordered region described by a one-dimensional random-phase sine-Gordon model. The collective pinning results in an effective static disorder potential with universal and non-Gaussian correlations, acting on propagating waves. We find signatures of the correlations in the wave transmission in a wide frequency range, which covers both the weak and strong localization regimes. Our theory elucidates the dynamics of collectively-pinned phases occurring in any natural or synthetic elastic medium. The latter one is exemplified by a one-dimensional array of Josephson junctions, for which we specify our results. The obtained results provide benchmarks for the array-enabled quantum simulations addressing the dynamics in broader and yet-unexplored domains of individual pinning and quantum Bose glass.