论文标题
连续的Sylvester方程
Minimal residual Hermitian and skew-Hermitian splitting iteration method for the continuous Sylvester equation
论文作者
论文摘要
通过将最小残留技术应用于Hermitian和Skew-Hermitian(HSS)迭代方案,我们引入了一种非平稳的迭代方法,称为最小残留遗物和偏斜 - 热派(MRHSS)迭代方法,以求解连续的Sylvester方程。数值结果验证了MRHSS迭代方法与连续Sylvester方程的HSS方法的有效性和鲁棒性。此外,通过数值计算,我们表明MRHSS拆分可以用作分裂预处理,并诱导准确,健壮且有效的预处理Krylov子空间迭代方法来求解连续的Sylvester方程。
By applying the minimal residual technique to the Hermitian and skew-Hermitian (HSS) iteration scheme, we introduce a non-stationary iteration method named minimal residual Hermitian and skew-Hermitian (MRHSS) iteration method to solve the continuous Sylvester equation. Numerical results verify the effectiveness and robustness of the MRHSS iteration method versus the HSS method for the continuous Sylvester equation. Moreover, by numerical computation, we show that the MRHSS splitting can be used as a splitting preconditioner and induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the continuous Sylvester equation.