论文标题

Bayestime:稀疏纵向数据的贝叶斯功能主成分

BayesTime: Bayesian Functional Principal Components for Sparse Longitudinal Data

论文作者

Jiang, Lingjing, Zhong, Yuan, Elrod, Chris, Natarajan, Loki, Knight, Rob, Thompson, Wesley K.

论文摘要

在许多应用领域,例如在纵向微生物组分析中,建模非线性时间轨迹具有基本兴趣。许多现有的方法着重于估计平均轨迹,但是评估单个受试者的时间模式通常也很有价值。稀疏主成分分析(SFPCA)是评估非线性轨迹差异的有用工具。但是,其应用于真实数据通常需要仔细的模型选择标准和诊断工具。在这里,我们提出了一种贝叶斯的SFPCA方法,该方法允许用户使用有效的剩余交叉验证(LOO),以及带有帕累托平滑的重要性采样(PSIS)进行模型选择,并利用PSIS-LOO的估计形状参数以及后验预测检查以及用于图形模型诊断的后端预测检查。因此,该贝叶斯实施使SFPCA仔细应用于广泛的纵向数据应用程序。

Modeling non-linear temporal trajectories is of fundamental interest in many application areas, such as in longitudinal microbiome analysis. Many existing methods focus on estimating mean trajectories, but it is also often of value to assess temporal patterns of individual subjects. Sparse principal components analysis (SFPCA) serves as a useful tool for assessing individual variation in non-linear trajectories; however its application to real data often requires careful model selection criteria and diagnostic tools. Here, we propose a Bayesian approach to SFPCA, which allows users to use the efficient leave-one-out cross-validation (LOO) with Pareto-smoothed importance sampling (PSIS) for model selection, and to utilize the estimated shape parameter from PSIS-LOO and also the posterior predictive checks for graphical model diagnostics. This Bayesian implementation thus enables careful application of SFPCA to a wide range of longitudinal data applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源