论文标题

半监督语义分段的三阶段自我训练框架

A Three-Stage Self-Training Framework for Semi-Supervised Semantic Segmentation

论文作者

Ke, Rihuan, Aviles-Rivero, Angelica, Pandey, Saurabh, Reddy, Saikumar, Schönlieb, Carola-Bibiane

论文摘要

语义细分已在社区中广泛研究,在该社区中,最先进的技术基于监督模型。这些模型报告了前所未有的性能,以需要大量高质量分割口罩的成本。要获得这样的注释非常昂贵且耗时,尤其是在需要像素级注释的语义细分中。在这项工作中,我们通过提出一个整体解决方案作为半监督语义分割的三阶段自我训练框架来解决这个问题。我们技术的关键思想是提取伪掩模的统计信息,以减少预测概率的不确定性,同时以多任务的方式执行分割一致性。我们通过三阶段解决方案实现了这一目标。首先,我们训练一个分割网络,以产生粗糙的伪面具,这些伪面罩预测概率是高度不确定的。其次,然后我们使用多任务模型来降低伪面具的不确定性,该模型在利用数据的丰富统计信息时执行一致性。我们将我们的方法与半监督语义分割的现有方法进行了比较,并通过广泛的实验证明了其最先进的性能。

Semantic segmentation has been widely investigated in the community, in which the state of the art techniques are based on supervised models. Those models have reported unprecedented performance at the cost of requiring a large set of high quality segmentation masks. To obtain such annotations is highly expensive and time consuming, in particular, in semantic segmentation where pixel-level annotations are required. In this work, we address this problem by proposing a holistic solution framed as a three-stage self-training framework for semi-supervised semantic segmentation. The key idea of our technique is the extraction of the pseudo-masks statistical information to decrease uncertainty in the predicted probability whilst enforcing segmentation consistency in a multi-task fashion. We achieve this through a three-stage solution. Firstly, we train a segmentation network to produce rough pseudo-masks which predicted probability is highly uncertain. Secondly, we then decrease the uncertainty of the pseudo-masks using a multi-task model that enforces consistency whilst exploiting the rich statistical information of the data. We compare our approach with existing methods for semi-supervised semantic segmentation and demonstrate its state-of-the-art performance with extensive experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源