论文标题
量子马尔可夫半群的渐近形状,用于紧凑的均匀树
Asymptotic Shape of Quantum Markov Semigroups for Compact Uniform Trees
论文作者
论文摘要
我们在$ l^p $ -compact $,$ sublable hilbert $,$ supersmmetric Process $:$ $ [0,\ infty)\!\ times \!\ mathbb {r}^{ m} \ rvert}/\ Mathcal {a}^{\ otimes m} $ on Quantum $ {\ rm u}(\ lvert \ Mathcal {a}^{\ otimes m} \ rvert)$ semoffs $。模块化亚组$,$渐近 - 近神性是熵的$ \ mathbb {r} $ shape for Suilting cartition $。
We give locally finite Markov trees in $L^p$-compact$,$ separable Hilbert$,$ supersymmetric process$:$ $[0,\infty)\!\times\!\mathbb{R}^{\lvert\mathcal{A}^{\otimes m}\rvert}/\mathcal{A}^{\otimes m}$ on quantum ${\rm U}(\lvert\mathcal{A}^{\otimes m}\rvert)$ semigroups$.$ In full automorphism group ${\rm Aut}({\rm\bf T})$ of modular subgroup$,$ asymptotic-ergodicity is entropy-worthy $\mathbb{R}$ shape for uniform partition$.$