论文标题

Dyck路径和Q-Rook理论的色度对称功能(扩展摘要)

Chromatic symmetric functions of Dyck paths and q-rook theory (extended abstract)

论文作者

Colmenarejo, Laura, Morales, Alejandro H., Panova, Greta

论文摘要

Stanley及其Shareshian-Wachs $ Q $ -Analogue的Dyck路径的色度对称功能(CSF)具有与Hessenberg品种,对角线谐波和LLT多项式的重要连接。对于所谓的Abelian Dyck路径,它们也与Stanley-Stumbridge(1993)和Guay-Paquet(2013)的结果相关的奇怪的是与非攻击的roks的位置相关。对于$ q $ - analogue,这些结果已由Abreu-Nigro(2020)和Guay-Paquet(私人通信)(使用$ Q $ hit数字)推广,这些数字是Garsia和Remmel引入的变体。我们的主要结果之一是瓜伊·帕奎特(Guay-Paquet)优雅的身份的新证明,它以$ q $ hit系数的CSF为基础表达$ Q $ -CSF。我们进一步显示了它与基本对称函数中$ q $ -CSF扩展的Abreu-Nigro身份的等效性。 这是FPSAC扩展抽象版本。完整版本在Arxiv:2104.07599。

The chromatic symmetric function (CSF) of Dyck paths of Stanley and its Shareshian-Wachs $q$-analogue have important connections to Hessenberg varieties, diagonal harmonics, and LLT polynomials. In the case of, so-called, abelian Dyck paths they are also curiously related to placements of non-attacking rooks by results of Stanley-Stembridge (1993) and Guay-Paquet (2013). For the $q$-analogue, these results have been generalized by Abreu-Nigro (2020) and Guay-Paquet (private communication), using $q$-hit numbers, which are a variant of the ones introduced by Garsia and Remmel. Among our main results is a new proof of Guay-Paquet's elegant identity expressing the $q$-CSFs in a CSF basis with $q$-hit coefficients. We further show its equivalence to the Abreu-Nigro identity expanding the $q$-CSF in the elementary symmetric functions. This is the FPSAC extended abstract version. The full version is at ArXiv: 2104.07599.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源