论文标题

Pi-gan:3D感知图像合成的定期隐式生成对抗网络

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

论文作者

Chan, Eric R., Monteiro, Marco, Kellnhofer, Petr, Wu, Jiajun, Wetzstein, Gordon

论文摘要

我们目睹了3D感知图像合成的快速进步,利用了生成视觉模型和神经渲染的最新进展。然而,现有的方法以两种方式下降:首先,它们可能缺乏基本的3D表示或依赖于观看的渲染,因此可以合成不一致的图像一致;其次,它们通常取决于表示网络体系结构的表现不足,因此其结果缺乏图像质量。我们提出了一个新颖的生成模型,称为高质量的3D感知图像合成,称为周期性隐式生成对抗网络($π$ -GAN或PI-GAN)。 $π$ - gan利用具有周期性激活功能和体积渲染的神经表示形式,将场景表示为视图一致的3D表示,并具有细节。所提出的方法获得了具有多个真实和合成数据集的3D感知图像合成的最新结果。

We have witnessed rapid progress on 3D-aware image synthesis, leveraging recent advances in generative visual models and neural rendering. Existing approaches however fall short in two ways: first, they may lack an underlying 3D representation or rely on view-inconsistent rendering, hence synthesizing images that are not multi-view consistent; second, they often depend upon representation network architectures that are not expressive enough, and their results thus lack in image quality. We propose a novel generative model, named Periodic Implicit Generative Adversarial Networks ($π$-GAN or pi-GAN), for high-quality 3D-aware image synthesis. $π$-GAN leverages neural representations with periodic activation functions and volumetric rendering to represent scenes as view-consistent 3D representations with fine detail. The proposed approach obtains state-of-the-art results for 3D-aware image synthesis with multiple real and synthetic datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源