论文标题
$ \ mathbb f_p $ -selberg类型$ a_n $的积分
The $\mathbb F_p$-Selberg integral of type $A_n$
论文作者
论文摘要
我们证明了$ \ mathbb f_p $ -Selberg $ a_n $的整合公式,其中$ \ m athbb f_p $ -selberg积分是有限字段$ \ mathbb f_p f_p $ and odd pulte $ pulte $ p $ p $ p $ p $ p $ p $。该公式是由Kz方程的多维超几何解和相同方程的多项式溶液减少模量$ p $之间的类比。对于类型$ a_1 $,作者在先前的论文中证明了该公式。
We prove an $\mathbb F_p$-Selberg integral formula of type $A_n$, in which the $\mathbb F_p$-Selberg integral is an element of the finite field $\mathbb F_p$ with odd prime number $p$ of elements. The formula is motivated by analogy between multidimensional hypergeometric solutions of the KZ equations and polynomial solutions of the same equations reduced modulo $p$. For the type $A_1$ the formula was proved in a previous paper by the authors.