论文标题
量子网络中因果秩序发现的有效算法
Efficient Algorithms for Causal Order Discovery in Quantum Networks
论文作者
论文摘要
给定对输入和输出系统的黑框访问,我们开发了与系统数量相对于多项式查询复杂性的第一个有效的量子因果秩序发现算法。我们用量子梳对因果顺序进行建模,我们的算法输出给定过程与之兼容的输入和输出顺序。我们的算法搜索因果顺序中的最后一个输入和最后一个输出,将其删除,并迭代地重复上述过程,直到我们获得所有输入和输出的顺序为止。我们的方法保证了具有低kraus等级的量子梳的多项式运行时间,即噪声低,信息丢失很少。对于可以从局部观察结果推断出因果秩序的特殊情况,我们还提出了查询复杂性较低且仅需要局部状态准备和局部测量的算法。我们的算法将提供有效的方法来检测和优化量子通信网络中的可用传输路径,以及验证量子电路并发现多部分量子系统的潜在结构的方法。
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm with polynomial query complexity with respect to the number of systems. We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with. Our algorithm searches for the last input and the last output in the causal order, removes them, and iteratively repeats the above procedure until we get the order of all inputs and outputs. Our method guarantees a polynomial running time for quantum combs with a low Kraus rank, namely processes with low noise and little information loss. For special cases where the causal order can be inferred from local observations, we also propose algorithms that have lower query complexity and only require local state preparation and local measurements. Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks, as well as methods to verify quantum circuits and to discover the latent structure of multipartite quantum systems.