论文标题

使用神经体系结构搜索自动路由预测器开发

Automatic Routability Predictor Development Using Neural Architecture Search

论文作者

Chang, Chen-Chia, Pan, Jingyu, Zhang, Tunhou, Xie, Zhiyao, Hu, Jiang, Qi, Weiyi, Lin, Chun-Wei, Liang, Rongjian, Mitra, Joydeep, Fallon, Elias, Chen, Yiran

论文摘要

机器学习技术的兴起激发了其在电子设计自动化(EDA)中应用的繁荣,并有助于提高芯片设计中的自动化程度。但是,手动制作的机器学习模型需要广泛的人类专业知识和巨大的工程工作。在这项工作中,我们利用神经体系结构搜索(NAS)自动化高质量神经体系结构的开发,以进行路由性预测,这可以帮助指导细胞放置可路由解决方案。我们的搜索方法支持各种操作和高度灵活的连接,从而导致架构与以前所有的人类制作的模型都有明显不同。大型数据集的实验结果表明,我们自动生成的神经体系结构显然优于多个代表性手动制作的解决方案。与手动制作型号的最佳案例相比,NAS生成的型号在预测DRC曲线(ROC-AUC)下肯德尔的$τ$ 5.85%的$τ$上涨了5.85%,在DRC热点探测中提高了2.12%。此外,与人工制作的模型相比,很容易开发几周,我们有效的NAS方法仅需0.3天即可完成整个自动搜索过程。

The rise of machine learning technology inspires a boom of its applications in electronic design automation (EDA) and helps improve the degree of automation in chip designs. However, manually crafted machine learning models require extensive human expertise and tremendous engineering efforts. In this work, we leverage neural architecture search (NAS) to automate the development of high-quality neural architectures for routability prediction, which can help to guide cell placement toward routable solutions. Our search method supports various operations and highly flexible connections, leading to architectures significantly different from all previous human-crafted models. Experimental results on a large dataset demonstrate that our automatically generated neural architectures clearly outperform multiple representative manually crafted solutions. Compared to the best case of manually crafted models, NAS-generated models achieve 5.85% higher Kendall's $τ$ in predicting the number of nets with DRC violations and 2.12% better area under ROC curve (ROC-AUC) in DRC hotspot detection. Moreover, compared with human-crafted models, which easily take weeks to develop, our efficient NAS approach finishes the whole automatic search process with only 0.3 days.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源