论文标题

基于内核的机器学习方法,用于计算多体绿色功能理论中的准粒子能量

A Kernel-based Machine Learning Approach to Computing Quasiparticle Energies within Many-Body Green's Functions Theory

论文作者

Tirimbó, Gianluca, Çaylak, Onur, Baumeier, Björn

论文摘要

我们提出了基于内核脊回归(KRR)的监督学习方法,并结合了遗传算法(气),以计算多体绿色功能理论中的准粒子能量。这些代表材料电子激发的能量是对一组非线性方程的解决方案,其中包含$ GW $近似中的电子自能(SE)。由于该SE的频率依赖性,标准方法在计算上是昂贵的,并且可能会产生非物理解决方案,特别是对于较大的系统。在我们提出的模型中,我们将KRR用作自适应替代模型,从而减少了SE的显式计算数量。通过适当定义的健身函数,将找到准粒子能量的标准定点问题转换为全局优化问题,GA的应用可独特地产生与物理相关的解决方案。我们证明了我们的方法适用于从$ GW $ 100数据集中的一组分子中,众所周知,这些数据表现出特别有问题的SE结构。 KRR-GA模型的结果与参考标准实现在不到0.01 eV的范围内同意,同时将所需的SE评估的数量大约减少了十倍。

We present a Kernel Ridge Regression (KRR) based supervised learning method combined with Genetic Algorithms (GAs) for the calculation of quasiparticle energies within Many-Body Green's Functions Theory. These energies representing electronic excitations of a material are solutions to a set of non-linear equations, containing the electron self-energy (SE) in the $GW$ approximation. Due to the frequency-dependence of this SE, standard approaches are computationally expensive and may yield non-physical solutions, in particular for larger systems. In our proposed model, we use KRR as a self-adaptive surrogate model which reduces the number of explicit calculations of the SE. Transforming the standard fixed-point problem of finding quasiparticle energies into a global optimization problem with a suitably defined fitness function, application of the GA yields uniquely the physically relevant solution. We demonstrate the applicability of our method for a set of molecules from the $GW$100 dataset, which are known to exhibit a particularly problematic structure of the SE. Results of the KRR-GA model agree within less than 0.01 eV with the reference standard implementation, while reducing the number of required SE evaluations roughly by a factor of ten.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源