论文标题

人脑灰色和白质的隔室扩散和微结构特性,用双扩散编码代谢物和水的磁共振光谱

Compartmental diffusion and microstructural properties of human brain gray and white matter studied with double diffusion encoding magnetic resonance spectroscopy of metabolites and water

论文作者

Lundell, Henrik, Najac, Chloé, Bulk, Marjolein, Kan, Hermien E., Webb, Andrew G., Ronen, Itamar

论文摘要

水信号的双扩散编码(DDE)磁共振测量值提供了独特的能力,可以将微观各向异性扩散的影响与组织的结构单元与细胞的整体宏观定向分布分离。但是,由于信号在不同的细胞类型和组织室跨室中平均,因此检测到的显微镜各向异性的特异性受到限制。进行并排代谢物DDE光谱(DDES)和水DDE,其中广泛的B值逐渐消除细胞外贡献提供了互补的措施,细胞内和细胞外显微镜细胞分数各向异性($ $ $ $ fa)可以从中获得,并且可以估计。代谢物在很大程度上仅限于细胞内空间,因此为特定细胞类型的细胞内扩散率提供了基准。在这里,我们旨在通过结合水和代谢物DDES实验来估计组织和隔室特异性人脑微观结构。我们在两个大脑区域的人类受试者中进行了DDES,其中包含大量不同的白质(WM)和灰质(GM):顶白质(PWM)和枕灰质物(OGM)在7 T MRI扫描仪上。 PWM和OGM中代谢物DDES实验的结果表明,除了灰质胶质神经胶质外,神经元和神经胶质中的高度各向异性细胞内空间。通过对GM/WM组织在感兴趣的量相对于GM/WM组织分数的显微镜平行扩散获得的水和TNAA细胞质中的曲折度值非常相似,同时表现出灰质和更复杂的细胞和更复杂的细胞和更复杂的细胞和更复杂的细胞层的差异,并表现出更明显的差异。 WM中的远程轴突。

Double diffusion encoding (DDE) magnetic resonance measurements of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribution of cells. However, the specificity in detected microscopic anisotropy is limited as the signal is averaged over different cell types and across tissue compartments. Performing side-by-side metabolite DDE spectroscopy (DDES) and water DDES in which a wide range of b-values is used to gradually eliminate the extracellular contribution provides complementary measures from which intracellular and extracellular microscopic fractional anisotropies ($μ$FA) and diffusivities can be estimated. Metabolites are largely confined to the intracellular space and therefore provide a benchmark for intracellular diffusivity of specific cell types. Here, we aimed to estimate tissue- and compartment-specific human brain microstructure by combining water and metabolites DDES experiments. We performed DDES in human subjects in two brain regions that contain widely different amounts of white matter (WM) and gray matter (GM): parietal white matter (PWM) and occipital gray matter (OGM) on a 7 T MRI scanner. Results of the metabolite DDES experiments in both PWM and OGM suggest a highly anisotropic intracellular space within neurons and glia, with the possible exception of gray matter glia. Tortuosity values in the cytoplasm for water and tNAA, obtained with correlation analysis of microscopic parallel diffusivity with respect to GM/WM tissue fraction in the volume of interest, are remarkably similar for both molecules, while exhibiting a clear difference between gray and white matter, suggesting a more crowded cytoplasm and more complex cytomorphology of neuronal cell bodies and dendrites in GM than those found in long-range axons in WM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源