论文标题
弦图改写理论I:用Frobenius结构重写
String Diagram Rewrite Theory I: Rewriting with Frobenius Structure
论文作者
论文摘要
弦图是一种强大而直观的图形语法,起源于对称单体类别的研究。在过去的几年中,他们发现了在各种计算结构的建模中的应用,在计算机科学,物理,控制理论,语言学和生物学等各种领域中。 在许多这样的建议中,描述的系统的转换被建模为重写图规则。这些发展要求重写弦图的数学基础:而术语的重写理论是充分理解的,弦图的二维性质会带来其他挑战。 这项工作系统化并扩大了一系列奠定了此类基础的近期会议论文。作为第一步,我们专注于以Frobenius代数为字符串图表理论的重写系统。这种情况普遍存在各种方法中出现:例如,在线性动力学系统的代数语义中,Frobenius结构模拟电路的接线;在分类量子力学中,它们模拟了相互作用的量子可观察物。 我们的工作介绍了弦图重写模式FROBENIUS结构的组合解释,该结构是根据双重刺激超图的重写。此外,我们证明这种解释是合理的和完整的。在最后一部分中,我们还可以看到该方法可以推广以建模重写Modulo多个Frobenius结构。作为概念证明,我们展示了如何从这些结果中得出相互作用的终止策略,这是量子电路和信号流图研究中的重要重写理论。
String diagrams are a powerful and intuitive graphical syntax, originated in the study of symmetric monoidal categories. In the last few years, they have found application in the modelling of various computational structures, in fields as diverse as Computer Science, Physics, Control Theory, Linguistics, and Biology. In many such proposals, the transformations of the described systems are modelled as rewrite rules of diagrams. These developments demand a mathematical foundation for string diagram rewriting: whereas rewrite theory for terms is well-understood, the two-dimensional nature of string diagrams poses additional challenges. This work systematises and expands a series of recent conference papers laying down such foundation. As first step, we focus on the case of rewrite systems for string diagrammatic theories which feature a Frobenius algebra. This situation ubiquitously appear in various approaches: for instance, in the algebraic semantics of linear dynamical systems, Frobenius structures model the wiring of circuits; in categorical quantum mechanics, they model interacting quantum observables. Our work introduces a combinatorial interpretation of string diagram rewriting modulo Frobenius structures, in terms of double-pushout hypergraph rewriting. Furthermore, we prove this interpretation to be sound and complete. In the last part, we also see that the approach can be generalised to model rewriting modulo multiple Frobenius structures. As a proof of concept, we show how to derive from these results a termination strategy for Interacting Bialgebras, an important rewrite theory in the study of quantum circuits and signal flow graphs.