论文标题
零无限作为开放的哈密顿系统
Null infinity as an open Hamiltonian system
论文作者
论文摘要
当系统排放引力辐射时,债券质量会减小。如果邦迪能量是哈密顿量,则只能是时间依赖的哈密顿量。在本文中,我们表明,邦迪能量可以理解为在协变相空间上的时间依赖的哈密顿量。我们的派生始于在域中的范围内的哈密顿公式。我们在此类无效边界上引入了最通用的边界条件,并计算出增强,能量和角动量的准局部电荷。最初,这些域在有限的距离处,因此有天然的IR调节剂。为了删除红外调节器,我们引入了双重空叶子,以及适应的纽曼 - 纯null-null Tetrad。两个无效的方向都是表面正交的。我们研究了这种特定的无效叶子的下降条件,并将极限限制为无限无限。在零无穷大,我们在全非扰动水平上恢复了两个辐射模式的债券质量和通常的协变相空间。除技术结果外,该框架还提供了两个重要的物理见解。首先,它解释了在Wald-Zoupas框架中添加的角项的物理意义,以使准保存的电荷可集成。要添加的术语仅仅是哈密顿量相对于驱动哈密顿量时间依赖性的背景字段的导数。其次,我们提出了对邦迪质量的新解释,因为未来无效无穷大的重力边缘模式的热力学自由能。然后,邦迪大规模定律就是这样的陈述,即自由能在朝着热平衡的过程中始终降低。
When a system emits gravitational radiation, the Bondi mass decreases. If the Bondi energy is Hamiltonian, it can thus only be a time dependent Hamiltonian. In this paper, we show that the Bondi energy can be understood as a time-dependent Hamiltonian on the covariant phase space. Our derivation starts from the Hamiltonian formulation in domains with boundaries that are null. We introduce the most general boundary conditions on a generic such null boundary, and compute quasi-local charges for boosts, energy and angular momentum. Initially, these domains are at finite distance, such that there is a natural IR regulator. To remove the IR regulator, we introduce a double null foliation together with an adapted Newman--Penrose null tetrad. Both null directions are surface orthogonal. We study the falloff conditions for such specific null foliations and take the limit to null infinity. At null infinity, we recover the Bondi mass and the usual covariant phase space for the two radiative modes at the full non-perturbative level. Apart from technical results, the framework gives two important physical insights. First of all, it explains the physical significance of the corner term that is added in the Wald--Zoupas framework to render the quasi-conserved charges integrable. The term to be added is simply the derivative of the Hamiltonian with respect to the background fields that drive the time-dependence of the Hamiltonian. Secondly, we propose a new interpretation of the Bondi mass as the thermodynamical free energy of gravitational edge modes at future null infinity. The Bondi mass law is then simply the statement that the free energy always decreases on its way towards thermal equilibrium.