论文标题
Lipschitz稳定性用于向后热方程,并应用于荧光显微镜
Lipschitz stability for Backward Heat Equation with application to Fluorescence Microscopy
论文作者
论文摘要
该手稿的第二个版本包括在附录中指出了已发表版本的错误,并为Lipschitz稳定性分析提供了替代结果,可对向后热传播问题及其在光板荧光显微镜上的应用。 第一个版本的摘要:在这项工作中,我们研究了Lipschitz稳定性,从而从$ \ Mathbb {r}^n $中的热量方程紧凑地重建,这是从沿正时间隔的测量和开放式设置中的测量值重建。我们利用解决方程相对于初始条件的明确依赖性。通过卡尔曼估计,我们为沿外部区域$ω\ times(τ,t)$进行观察的情况获得了一个类似的结果,以使未观察到的部分$ \ mathbb {r}^n \backslashΩ$边界。在后一种情况下,当初始温度属于某个可允许的集合并且没有假定支持的紧凑性时,卡尔曼估计方法将产生一般的条件对数稳定性。此外,我们将这些结果应用于$ \ mathbb {r} $中的热量方程式的类似结果,用于在$ \ \ \ \ m athbb {r} \ times [0,\ infty)$的曲线上可用的测量结果,从其中在2D荧光显微镜中产生的稳定性估算值。为了进一步了解这种Lipschitz稳定性,特别是其稳定性常数相对于测量的噪声水平,基于荧光显微镜中的逆问题的线性系统的构建,给出了数值重建。我们研究了相应矩阵的条件数量的稳定性常数。
This second version of the manuscript includes, in the appendices, an erratum that points out an error on the published version and offers alternative results for the Lipschitz stability analysis of the backward heat propagation problem and its applications to light sheet fluorescence microscopy. Abstract of the first version: In this work, we study a Lipschitz stability result in the reconstruction of a compactly supported initial temperature for the heat equation in $\mathbb{R}^n$, from measurements along a positive time interval and over an open set containing its support. We take advantage of the explicit dependency of solutions to the heat equation with respect to the initial condition. By means of Carleman estimates we obtain an analogous result for the case when the observation is made along an exterior region $ω\times(τ,T)$, such that the unobserved part $\mathbb{R}^n\backslashω$ is bounded. In the latter setting, the method of Carleman estimates gives a general conditional logarithmic stability result when initial temperatures belong to a certain admissible set, and without the assumption of compactness of support. Furthermore, we apply these results to deduce a similar result for the heat equation in $\mathbb{R}$ for measurements available on a curve contained in $\mathbb{R}\times [0,\infty)$, from where a stability estimate for an inverse problem arising in 2D Fluorescence Microscopy is deduced as well. In order to further understand this Lipschitz stability, in particular, the magnitude of its stability constant with respect to the noise level of the measurements, a numerical reconstruction is presented based on the construction of a linear system for the inverse problem in Fluorescence Microscopy. We investigate the stability constant with the condition number of the corresponding matrix.