论文标题
Gaia早期数据版本3:Gaia的点和线扩散功能的建模和校准
Gaia Early Data Release 3: Modelling and calibration of Gaia's point and line spread functions
论文作者
论文摘要
上下文:Gaia任务的前所未有的天文学精度取决于对Gaia数据流中源位置的准确估计。这最终由点扩散函数(PSF)拟合进行,进而需要精确重建PSF。 Gaia早期数据版本3(EDR3)将首次使用PSF校准,该校准模拟了几个最强的依赖性,从而导致系统性降低的系统误差。目的:我们描述了为Gaia EDR3实施的PSF模型和校准管道,包括对34个月数据中校准结果的分析。我们包括讨论当前管道的局限性以及未来版本的指示。这将用于Gaia数据的用户,也可以用作其他精度天文统计任务的参考。方法:我们基于基础组件的线性组合开发了1D线扩展函数(LSF)和2D PSF配置文件的模型。我们使用对颜色和其他依赖性的简单参数分析,将模型与独立时间范围的选定主要来源相提并论。通过在平方根信息过滤器中合并独立的校准来平滑时间的变化,并在某些任务事件中重置引起PSF的不连续变化。结果:PSF校准显示了很强的时间和颜色依赖,可以准确地重现Gaia Astrestoric仪器的不同状态。对残差的分析揭示了当前模型的性能和局限性和校准管道,并指示了未来开发的方向。结论:GAIA EDR3进行的PSF建模和校准代表了数据处理中的重要一步,并将导致核心任务数据产品的系统错误减少。未来的数据发布预计将进一步改善。
Context: The unprecedented astrometric precision of the Gaia mission relies on accurate estimates of the locations of sources in the Gaia data stream. This is ultimately performed by point spread function (PSF) fitting, which in turn requires an accurate reconstruction of the PSF. Gaia Early Data Release 3 (EDR3) will, for the first time, use a PSF calibration that models several of the strongest dependences, leading to signficantly reduced systematic errors. Aims: We describe the PSF model and calibration pipeline implemented for Gaia EDR3, including an analysis of the calibration results over the 34 months of data. We include a discussion of the limitations of the current pipeline and directions for future releases. This will be of use both to users of Gaia data and as a reference for other precision astrometry missions. Methods: We develop models of the 1D line spread function (LSF) and 2D PSF profiles based on a linear combination of basis components. We fit the models to selected primary sources in independent time ranges, using simple parameterisations for the colour and other dependences. Variation in time is smoothed by merging the independent calibrations in a square root information filter, with resets at certain mission events that induce a discontinuous change in the PSF. Results: The PSF calibration shows strong time and colour dependences that accurately reproduce the varying state of the Gaia astrometric instrument. Analysis of the residuals reveals both the performance and the limitations of the current models and calibration pipeline, and indicates the directions for future development. Conclusions: The PSF modelling and calibration carried out for Gaia EDR3 represents a major step forwards in the data processing and will lead to reduced systematic errors in the core mission data products. Further significant improvements are expected in the future data releases.