论文标题
通过有关多对象遮挡的推理,可靠的实例分割
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion
论文作者
论文摘要
用深层神经网络分析复杂的场景是一项具有挑战性的任务,尤其是当图像包含多个对彼此部分遮挡的对象时。现有的图像分析方法主要是独立处理对象,并且没有考虑附近对象的相对遮挡。在本文中,我们提出了一个深层网络,用于多对象实例分割,该网络可用于阻塞,并且只能通过边界框监督对其进行训练。我们的作品建立在组成网络的基础上,该网络学习了神经特征激活的生成模型,以定位封闭器并根据其非封闭的部分对对象进行分类。我们将其生成模型扩展到包含多个对象,并引入一个框架,以有效地推断有挑战性的遮挡场景。特别是,我们获得对象类及其实例和封闭器分段的前馈预测。我们引入了一个遮挡推理模块(ORM),该模块(ORM)定位错误的分段并估算校正它们的遮挡顺序。改进的分割掩码又以自上而下的方式集成到网络中,以改善图像分类。我们在KITTI实例数据集(KIN)和合成遮挡数据集上进行的实验证明了我们模型在遮挡下的多对象实例分割处的有效性和鲁棒性。代码可在https://github.com/xd7479/multi-Object-occlusion上公开获得。
Analyzing complex scenes with Deep Neural Networks is a challenging task, particularly when images contain multiple objects that partially occlude each other. Existing approaches to image analysis mostly process objects independently and do not take into account the relative occlusion of nearby objects. In this paper, we propose a deep network for multi-object instance segmentation that is robust to occlusion and can be trained from bounding box supervision only. Our work builds on Compositional Networks, which learn a generative model of neural feature activations to locate occluders and to classify objects based on their non-occluded parts. We extend their generative model to include multiple objects and introduce a framework for efficient inference in challenging occlusion scenarios. In particular, we obtain feed-forward predictions of the object classes and their instance and occluder segmentations. We introduce an Occlusion Reasoning Module (ORM) that locates erroneous segmentations and estimates the occlusion order to correct them. The improved segmentation masks are, in turn, integrated into the network in a top-down manner to improve the image classification. Our experiments on the KITTI INStance dataset (KINS) and a synthetic occlusion dataset demonstrate the effectiveness and robustness of our model at multi-object instance segmentation under occlusion. Code is publically available at https://github.com/XD7479/Multi-Object-Occlusion.