论文标题

在Kerr背景上的共同不变波方程的完全伪谱解

Fully pseudospectral solution of the conformally invariant wave equation on a Kerr background

论文作者

Hennig, Jörg, Macedo, Rodrigo Panosso

论文摘要

我们通过数值和分析方法研究了KERR背景上共同不变波方程的轴对称解。我们的主要重点是附近无限无穷大的解决方案的行为,该解决方案适当地表示为圆柱体。早期对Schwarzschild背景的波方程的研究揭示了有关相应溶液规律性的重要细节。发现在圆柱体上,解决方案在无限的许多订单下通常会产生对数奇异性。此外,这些奇异性也将“传播”到未来的无限无穷大。但是,通过对初始数据施加某些规律性条件,可以删除最低阶的奇点。在这里,我们对这些结果对旋转黑洞背景的概括感兴趣,并研究了旋转速率对溶液特性的影响。为了这个目的,我们首先构建了Kerr溶液的共形紧凑型,该紧凑型在空间无穷大处产生了合适的圆柱体的表示。除了对圆柱体进行的分析研究外,我们还使用完全伪光谱法求解波方程,这使我们能够获得高度准确的数值溶液。这对于对解决方案的规律性的详细分析至关重要。在Schwarzschild案例中,数值问题可以有效地降低为$(1+1)$ - 尺寸方程。在这里,我们提出一个代码,可以按照Kerr背景上的轴对称波执行整个$ 2+1 $的演变。

We study axisymmetric solution to the conformally invariant wave equation on a Kerr background by means of numerical and analytical methods. Our main focus is on the behaviour of the solutions near spacelike infinity, which is appropriately represented as a cylinder. Earlier studies of the wave equation on a Schwarzschild background have revealed important details about the regularity of the corresponding solutions. It was found that, on the cylinder, the solutions generically develop logarithmic singularities at infinitely many orders. Moreover, these singularities also `spread' to future null infinity. However, by imposing certain regularity conditions on the initial data, the lowest-order singularities can be removed. Here we are interested in a generalisation of these results to a rotating black hole background and study the influence of the rotation rate on the properties of the solutions. To this aim, we first construct a conformal compactification of the Kerr solution which yields a suitable representation of the cylinder at spatial infinity. Besides analytical investigations on the cylinder, we numerically solve the wave equation with a fully pseudospectral method, which allows us to obtain highly accurate numerical solutions. This is crucial for a detailed analysis of the regularity of the solutions. In the Schwarzschild case, the numerical problem could effectively be reduced to solving $(1+1)$-dimensional equations. Here we present a code that can perform the full $2+1$ evolution as required for axisymmetric waves on a Kerr background.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源