论文标题
CUTQC:使用小量子计算机进行大量子电路评估
CutQC: Using Small Quantum Computers for Large Quantum Circuit Evaluations
论文作者
论文摘要
量子计算(QC)是一种新的范式,它为某些计算问题提供了指数加速的潜力。每个附加量子量都会使QC算法可用的计算状态空间的大小增加一倍。这种指数缩放是QC的力量的基础,但是当今嘈杂的中间尺度量子(NISQ)设备在可伸缩性方面面临着重大的工程挑战。可以在NISQ设备上可靠运行的一组量子电路受其嘈杂操作和低量子计数的限制。 本文介绍了CUTQC,CUTQC是一种可扩展的混合计算方法,该方法结合了古典计算机和量子计算机,以启用无法单独使用古典或量子计算机上无法运行的量子电路的评估。 CUTQC将大量子电路切成较小的子电路,从而使其在较小的量子设备上执行。然后,经典后处理可以重建原始电路的输出。与唯一可行的当前替代替代模拟相比,这种方法提供了显着的运行时加速,并证明了对大于QC或经典模拟极限的量子电路的评估。此外,在实际系统运行中,CUTQC使用小型原型量子计算机实现了比最先进的大型NISQ设备实现的量子电路评估保真度要高得多。总体而言,这种混合方法使用户能够利用经典和量子计算资源来评估量子程序,远远超出了任何一个人的范围。
Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC's power, but today's Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative--purely classical simulations--and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone.