论文标题

探索AGP上的非线性相关器

Exploring non-linear correlators on AGP

论文作者

Khamoshi, Armin, Chen, Guo P., Henderson, Thomas M., Scuseria, Gustavo E.

论文摘要

单参考方法,例如基于Hartree-Fock的耦合群集理论,以其弱相关系统的准确性和效率而闻名。对于密切相关的系统,需要更复杂的方法。最近的研究揭示了反对称的Geminal功率(AGP)的潜力,这是对强相关问题的出色初始参考。尽管这些研究通过线性相关器改善了AGP,但我们在本文中探讨了一些非线性指数ANSATZE。我们特别研究了两种方法。类似于物理。 Rev. B 91,041114(R)(2015),我们表明,所有订单都可以总结到Hilbert-Space Jastrow操作员与Hilbert-Space Jastrow操作员的相似性转换为所有订单,并且可以通过投影Schrodinger方程来通过AGP解决。第二种方法是基于近似于最近在量子计算机上应用的统一的成对人群Ansatz。我们报告了针对这两种方法配对的哈密顿配对的基础状态的基准数值计算。

Single-reference methods such as Hartree-Fock-based coupled cluster theory are well known for their accuracy and efficiency for weakly correlated systems. For strongly correlated systems, more sophisticated methods are needed. Recent studies have revealed the potential of the antisymmetrized geminal power (AGP) as an excellent initial reference for the strong correlation problem. While these studies improved on AGP by linear correlators, we explore some non-linear exponential ansatze in this paper. We investigate two approaches in particular. Similar to Phys. Rev. B 91, 041114(R) (2015), we show that the similarity transformed Hamiltonian with a Hilbert-space Jastrow operator is summable to all orders and can be solved over AGP by projecting Schrodinger's equation. The second approach is based on approximating the unitary pair-hopper ansatz recently proposed for application on a quantum computer. We report benchmark numerical calculations against the ground state of the pairing Hamiltonian for both of these approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源