论文标题

它是合理的颜色吗?图像色的UCAPSNET

Is It a Plausible Colour? UCapsNet for Image Colourisation

论文作者

Pucci, Rita, Micheloni, Christian, Foresti, Gian Luca, Martinel, Niki

论文摘要

人类可以通过灰度图像的颜色来想象灰度图像的颜色,这对于他们的语义特征提取能力而没有特别努力。自主系统可以实现吗?它可以幻觉合理和鲜艳的色彩吗?这是颜色问题。与现有的依赖于通过监督预先训练的卷积神经网络模型的现有作品不同,我们将化学问题抛弃了,例如一项自我监督的学习任务。我们通过引入基于对抗性学习范式训练的胶囊的新颖体系结构来解决问题。胶囊网络能够提取图像中实体的语义表示,但有关其空间信息的详细信息,这对于颜色灰度图像很重要。因此,我们的UCAPSNET结构具有一个编码阶段,该阶段通过胶囊和空间细节通过卷积神经网络提取实体。解码阶段将实体特征与空间特征合并,以幻觉输入数据的合理颜色版本。 ImageNet基准测试的结果表明,与退出解决方案相比,我们的方法能够产生更充满活力和合理的颜色,并且比通过监督预先训练的模型获得了更高的性能。

Human beings can imagine the colours of a grayscale image with no particular effort thanks to their ability of semantic feature extraction. Can an autonomous system achieve that? Can it hallucinate plausible and vibrant colours? This is the colourisation problem. Different from existing works relying on convolutional neural network models pre-trained with supervision, we cast such colourisation problem as a self-supervised learning task. We tackle the problem with the introduction of a novel architecture based on Capsules trained following the adversarial learning paradigm. Capsule networks are able to extract a semantic representation of the entities in the image but loose details about their spatial information, which is important for colourising a grayscale image. Thus our UCapsNet structure comes with an encoding phase that extracts entities through capsules and spatial details through convolutional neural networks. A decoding phase merges the entity features with the spatial features to hallucinate a plausible colour version of the input datum. Results on the ImageNet benchmark show that our approach is able to generate more vibrant and plausible colours than exiting solutions and achieves superior performance than models pre-trained with supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源