论文标题
平面的简单循环盖和加权射影空间中某些一般性曲面的Seshadri常数
Simple cyclic covers of the plane and Seshadri constants of some general hypersurfaces in weighted projective space
论文作者
论文摘要
让$ x $成为加权投影空间中$ MD $的一般超出表面,重量为$ 1,1,1,对于$ d \ geq 2 $和$ m \ m \ geq 3 $的某些人。 We prove that the Seshadri constant of the ample generator of the Néron-Severi space at a general point $x\in X$ lies in the interval $\left[\sqrt{d}- \frac d m, \sqrt{d}\right]$ and thus approaches the possibly irrational number $\sqrt d$ as $m$ grows.
Let $X$ be a general hypersurface of degree $md$ in the weighted projective space with weights $1,1,1,m$ for some for $d\geq 2$ and $m\geq 3$. We prove that the Seshadri constant of the ample generator of the Néron-Severi space at a general point $x\in X$ lies in the interval $\left[\sqrt{d}- \frac d m, \sqrt{d}\right]$ and thus approaches the possibly irrational number $\sqrt d$ as $m$ grows.