论文标题
$ f(\ Mathcal {r,g,t})$ fragity中的紧凑星星
Compact Stars in $f(\mathcal{R,G,T})$ Gravity
论文作者
论文摘要
目前的工作是介绍一种新的修改引力理论,称为$ f(\ nathcal {r,g,t}))$(也称为$ f(\ nathcal {r,t,t,g})$重力,其中$ \ nathcal {r} $是ricci scalar,$ \ natercal and $ \ nathcal and var and gause and gauss and gaus and $ \ MATHCAL {T} $是能量量张量的轨迹。在这种重力中的不同模型的帮助下,我们研究了不同相对论紧凑型恒星的一些物理特征。为此,我们开发了有效修改的场方程,保护方程和测试粒子运动方程。然后,我们检查额外力(大量测试粒子,然后是非对格的几何图形线)对紧凑物体的影响。此外,我们采用了三个著名的星星,称为$ x-1 $,$ saxj1808.4-3658 $和$ 4U1820-30 $。通过各种图,分析了能量密度,各向异性压力,不同的能量条件,稳定性,各向异性以及这些奇怪的紧凑型恒星的平衡情况的物理行为。最后,我们得出的结论是能量条件所保持,这些恒星的核心是如此密集。
The present work is to introduce a new kind of modified gravitational theory, named as $f(\mathcal{R,G,T})$ (also $f(\mathcal{R,T,G})$) gravity, where $\mathcal{R}$ is the Ricci scalar, $\mathcal{G}$ is Gauss-Bonnet invariant and $\mathcal{T}$ is the trace of the energy-momentum tensor. With the help of different models in this gravity, we investigate some physical features of different relativistic compact stars. For this purpose, we develop the effectively modified field equations, conservation equation, and the equation of motion for test particle. Then, we check the impact of additional force (massive test particle followed by a non-geodesic line of geometry) on compact objects. Furthermore, we took three notable stars named as $Her X-1$, $SAXJ1808.4-3658$ and $4U1820-30$. The physical behavior of the energy density, anisotropic pressures, different energy conditions, stability, anisotropy, and the equilibrium scenario of these strange compact stars are analyzed through various plots. Finally, we conclude that the energy conditions hold, and the core of these stars is so dense.