论文标题
广义动量/复杂度对应关系
A Generalized Momentum/Complexity Correspondence
论文作者
论文摘要
全息复杂性,以复杂性=体积处方的幌子,配备了其生长速度和大量物质的平均进度动量之间的自然对应关系。此动量/复杂性对应关系可以与一般相对性动量约束的集成版本有关。在本文中,我们提出了一个概括,将完整的codazzi方程作为起点,该方程成功地说明了对输入动量的纯粹重力贡献。在真空爱因斯坦方程的精确PP波溶液中明确检查所提出的公式。
Holographic complexity, in the guise of the Complexity = Volume prescription, comes equipped with a natural correspondence between its rate of growth and the average infall momentum of matter in the bulk. This Momentum/Complexity correspondence can be related to an integrated version of the momentum constraint of general relativity. In this paper we propose a generalization, using the full Codazzi equations as a starting point, which successfully accounts for purely gravitational contributions to infall momentum. The proposed formula is explicitly checked in an exact pp-wave solution of the vacuum Einstein equations.