论文标题

磁为主的等离子体中的辐射湍流

Radiative turbulent flares in magnetically-dominated plasmas

论文作者

Nättilä, J., Beloborodov, A. M.

论文摘要

我们对磁化电子旋律等离子体中的重新连接介导的湍流进行2D和3D动力学模拟,并具有弱且强烈的辐射冷却。这样的耀斑可以围绕中子恒星产生并积聚黑洞。我们专注于磁性主导的磁场线的张力超过等离子体休息质量的因子$σ_0> 1 $。在模拟中,湍流在宏观尺度上是$ l_0 $的激发,我们观察到它通过在各种尺度上形成薄而动态的电流板来发展。沉积的宏观能量通过通电热和非热颗粒消散。粒子能量分布是通过冲动加速度重新连接电流板,逐渐随机加速和辐射损失来影响的。我们将辐射冷却的比率$ $ a $ a $的轻盘时间$ l_0/c $与冷却时间尺度相关,并研究增加$ a $对耀斑的效果。当辐射损失足够弱时,$ a <σ_0^{ - 1} $,产生的发射由随机加速的粒子主导,辐射能力取决于$ a $。所得的耀斑辐射光谱是宽阔且各向异性的。在坚固的冷却式中,$ a>σ_0^{ - 1} $,随机加速度受到抑制,而当前板的冲动加速度继续运行。随着$ A $的进一步增加,发射由热颗粒主导。我们的模拟为通过湍流进行了研究颗粒加速的新工具,尤其是在冷却与加速度竞争的高能量时。我们发现粒子分布受耗散的强内间歇性的影响,并且随机加速无法通过通用扩散系数描述。

We perform 2D and 3D kinetic simulations of reconnection-mediated turbulent flares in a magnetized electron-positron plasma, with weak and strong radiative cooling. Such flares can be generated around neutron stars and accreting black holes. We focus on the magnetically-dominated regime where tension of the background magnetic field lines exceeds the plasma rest mass by a factor $σ_0 > 1$. In the simulations, turbulence is excited on a macroscopic scale $l_0$, and we observe that it develops by forming thin, dynamic current sheets on various scales. The deposited macroscopic energy dissipates by energizing thermal and nonthermal particles. The particle energy distribution is shaped by impulsive acceleration in reconnecting current sheets, gradual stochastic acceleration, and radiative losses. We parameterize radiative cooling by the ratio $A$ of light-crossing time $l_0/c$ to a cooling timescale, and study the effect of increasing $A$ on the flare. When radiative losses are sufficiently weak, $A<σ_0^{-1}$, the produced emission is dominated by stochastically accelerated particles, and the radiative power depends logarithmically on $A$. The resulting flare radiation spectrum is broad and anisotropic. In the strong-cooling regime, $A>σ_0^{-1}$, stochastic acceleration is suppressed while impulsive acceleration in the current sheets continues to operate. As $A$ increases further, the emission becomes dominated by thermal particles. Our simulations offer a new tool to study particle acceleration by turbulence, especially at high energies, where cooling competes with acceleration. We find that the particle distribution is influenced by strong intermittency of dissipation, and stochastic acceleration cannot be described by a universal diffusion coefficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源