论文标题
Tom&Jerry Triples申请Fano 3倍
Tom & Jerry triples with an application to Fano 3-folds
论文作者
论文摘要
不反映是由于REID引起的理论,它构建了从更简单的数据开始的更复杂的环。未进行的想法旨在串行使用。 Papadakis和Neves制定了平行不可投入的理论。在目前的工作中,我们开发了一种新的不鉴定方法。从由5x5偏斜矩阵的Pfaffian定义的condimension 3开始,我们使用kustin-miller类型的平行不反射,以构建编码imensionsimension 6的Gorenstein环。我们提供了两个应用。这是加权投影空间中的两个Codimension 6 Fano的家族3倍。
Unprojection is a theory due to Reid which constructs more complicated rings starting from simpler data. The idea of unprojection is intended for serial use. Papadakis and Neves developed a theory of parallel unprojection. In the present work we develop a new method of unprojection. Starting from a codimension 3 ideal defined by the pfaffians of a 5x5 skewsymmetric matrix, we use parallel unprojection of Kustin-Miller type in order to construct Gorenstein rings of codimension 6. We give two applications. These are two families of codimension 6 Fano 3-folds, in weighted projective space.