论文标题
dpoly:深度学习聚合物阶段和相变
dPOLY: Deep Learning of Polymer Phases and Phase Transition
论文作者
论文摘要
机器学习(ML)和人工智能(AI)具有非凡的能力,可以对大数据集中的复杂模式和趋势进行分类,识别和表征。在这里,我们采用了机器学习方法的子类,即深度学习并开发通用AI工具 - 用于分析分子动力学轨迹并预测聚合物中的阶段和相变。该框架中使用了无监督的深神经网络,以绘制经过热物理处理的分子动力学轨迹,例如冷却,加热,干燥或压缩到较低的尺寸。随后,根据较低维度数据来开发监督的深神网络,以表征相位和相变。作为概念的证明,我们采用此框架来研究线圈,以使模型聚合物系统的过渡。我们进行粗粒细粒的分子动力学模拟,以在多种温度范围内收集单个聚合物链的分子动力学轨迹,并使用DPOLY框架预测聚合物阶段。 DPOLY框架准确地预测了线圈以在各种聚合物尺寸的情况下升温过渡的临界温度。该方法是通用的,可以扩展以捕获聚合物和其他软材料中的各种其他相变和动态交叉。
Machine learning (ML) and artificial intelligence (AI) have the remarkable ability to classify, recognize, and characterize complex patterns and trends in large data sets. Here, we adopt a subclass of machine learning methods viz., deep learnings and develop a general-purpose AI tool - dPOLY for analyzing molecular dynamics trajectory and predicting phases and phase transitions in polymers. An unsupervised deep neural network is used within this framework to map a molecular dynamics trajectory undergoing thermophysical treatment such as cooling, heating, drying, or compression to a lower dimension. A supervised deep neural network is subsequently developed based on the lower dimensional data to characterize the phases and phase transition. As a proof of concept, we employ this framework to study coil to globule transition of a model polymer system. We conduct coarse-grained molecular dynamics simulations to collect molecular dynamics trajectories of a single polymer chain over a wide range of temperatures and use dPOLY framework to predict polymer phases. The dPOLY framework accurately predicts the critical temperatures for the coil to globule transition for a wide range of polymer sizes. This method is generic and can be extended to capture various other phase transitions and dynamical crossovers in polymers and other soft materials.