论文标题
超快对固体中自旋和动量的光学控制
Ultrafast optical control over spin and momentum in solids
论文作者
论文摘要
激光光与物质的耦合可以对材料特性产生亚周期相干控制,而光学诱导的电流和磁性显示在超飞秒时间尺度上是可控制的。在这里,通过使用由线性和圆形脉冲组成的激光,我们表明可以在整个Brillouin区域中精确地创建指定的自旋和晶体动量的电荷。我们的杂种脉冲以控制的方式诱导绝热的内映射运动以及价值和传导带之间的垂直带之间激发,并且仅需要一个宽大的旋转分裂谷结构才能实现。这种情况通常在2D半导体中找到,我们用单层WSE $ _2 $演示了我们的方法。因此,我们建立了从激光光到对互相空间中激发的局部控制的途径,为在超快时间尺度上指定激发态的准备开辟了道路。
The coupling of laser light to matter can exert sub-cycle coherent control over material properties, with optically induced currents and magnetism shown to be controllable on ultrafast femtosecond time scales. Here, by employing laser light consisting of both linear and circular pulses, we show that charge of specified spin and crystal momentum can be created with precision throughout the first Brillouin zone. Our hybrid pulses induce in a controlled way both adiabatic intraband motion as well as vertical interband excitation between valence and conduction bands, and require only a gapped spin split valley structure for their implementation. This scenario is commonly found in the 2d semi-conductors, and we demonstrate our approach with monolayer WSe$_2$. We thus establish a route from laser light to local control over excitations in reciprocal space, opening the way to the preparation of momenta specified excited states at ultrafast time scales.