论文标题

积极的伪干预:可解释的视力模型的因果关系知情的对比学习

Proactive Pseudo-Intervention: Causally Informed Contrastive Learning For Interpretable Vision Models

论文作者

Wang, Dong, Yang, Yuewei, Tao, Chenyang, Gan, Zhe, Chen, Liqun, Kong, Fanjie, Henao, Ricardo, Carin, Lawrence

论文摘要

深度神经网络在理解复杂的视觉信号,与人类专家的表现方面表现出色。但是,模型决策的临时视觉解释通常揭示出令人震惊的依赖性,即利用与训练数据中目标标签密切相关的非毒物视觉提示。因此,深度神经网遭受了对从不同来源收集的新投入的概括,其决策规则的反向工程提供了有限的解释性。为了克服这些局限性,我们提出了一种新颖的对比学习策略,称为{\它是主动的伪干预}(PPI),该策略利用主动的干预措施来防止没有因果关系的图像特征。我们还设计了一个新颖的因果知识的显着映射模块,以识别关键图像像素以进行干预,并大大促进了模型的解释性。为了证明我们的建议的实用性,我们在标准的自然图像和具有挑战性的医学图像数据集上基准测试。 PPI增强模型始终相对于竞争解决方案提供卓越的性能,尤其是在异质来源的室外预测和数据集成方面。此外,与非因果关系相比,我们的因果训练的显着性图更为简洁,更有意义。

Deep neural networks excel at comprehending complex visual signals, delivering on par or even superior performance to that of human experts. However, ad-hoc visual explanations of model decisions often reveal an alarming level of reliance on exploiting non-causal visual cues that strongly correlate with the target label in training data. As such, deep neural nets suffer compromised generalization to novel inputs collected from different sources, and the reverse engineering of their decision rules offers limited interpretability. To overcome these limitations, we present a novel contrastive learning strategy called {\it Proactive Pseudo-Intervention} (PPI) that leverages proactive interventions to guard against image features with no causal relevance. We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability. To demonstrate the utility of our proposals, we benchmark on both standard natural images and challenging medical image datasets. PPI-enhanced models consistently deliver superior performance relative to competing solutions, especially on out-of-domain predictions and data integration from heterogeneous sources. Further, our causally trained saliency maps are more succinct and meaningful relative to their non-causal counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源