论文标题
PMP-NET:通过学习多步点移动路径来完成点云完成
PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving Paths
论文作者
论文摘要
点云完成的任务旨在预测不完整的3D形状的丢失零件。广泛使用的策略是从不完整的策略中生成完整的点云。但是,点云的无序性质将降低高质量3D形状的生成,因为仅使用潜在代码的生成过程才能捕获离散点的详细拓扑和结构。在本文中,我们通过从新的角度重新考虑完成任务来解决上述问题,在此我们将预测作为点云变形过程提出。具体而言,我们设计了一个名为PMP-NET的新型神经网络,以模仿地球搬运工的行为。它移动不完整输入的每个点以完成点云,其中点移动路径(PMP)的总距离应最短。因此,PMP-NET根据总点移动距离的约束预测每个点的唯一点移动路径。结果,该网络在点级上学习了严格而独特的对应关系,该通信可以捕获不完整形状和完整目标之间的详细拓扑和结构关系,从而提高了预测的完整形状的质量。我们在完成3D和PCN数据集上进行了全面的实验,这些实验证明了我们在最先进的点云完成方法上的优势。
The task of point cloud completion aims to predict the missing part for an incomplete 3D shape. A widely used strategy is to generate a complete point cloud from the incomplete one. However, the unordered nature of point clouds will degrade the generation of high-quality 3D shapes, as the detailed topology and structure of discrete points are hard to be captured by the generative process only using a latent code. In this paper, we address the above problem by reconsidering the completion task from a new perspective, where we formulate the prediction as a point cloud deformation process. Specifically, we design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover. It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths (PMP) should be shortest. Therefore, PMP-Net predicts a unique point moving path for each point according to the constraint of total point moving distances. As a result, the network learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target, and thus improves the quality of the predicted complete shape. We conduct comprehensive experiments on Completion3D and PCN datasets, which demonstrate our advantages over the state-of-the-art point cloud completion methods.