论文标题

来自单层量子近似优化算法的期望值

Expectation Values from the Single-Layer Quantum Approximate Optimization Algorithm on Ising Problems

论文作者

Ozaeta, Asier, van Dam, Wim, McMahon, Peter L.

论文摘要

我们报告单层($ p = 1 $)量子近似优化算法(QAOA)产生的能量值值景观(QAOA)。使用我们得出的分析公式获得景观。该公式使我们能够预测任何给定的ISIN问题实例的景观,并因此预测使用单层QAOA来启发该实例的最佳QAOA参数。我们通过证明它准确地重现了最近的实验报告中发布的景观,从而验证了我们的分析公式。然后,我们应用了我们的方法来解决以下问题:单层QAOA能够解决大型基准问题实例?我们使用分析公式来计算基准最大切割问题的最佳能量预测值,该问题最多$ 7 \,000 $顶点和$ 41 \,459美元的边缘。我们还计算了最高$ 100 \,000美元的顶点和$ 150 \,000 $边缘的一般ising问题的最佳能源期望。我们的结果提供了一个估计单层QAOA在带有数千吨量子计算机上运行时的工作状况。除了在使用最佳角度时提供性能估计外,我们还能够使用分析结果来研究人们在实践中运行QAOA在不同类别的ISING实例中可能遇到的困难。我们发现,根据Ising Hamiltonian的参数,期望值景观可能非常复杂,具有鲜明的特征,需要高度准确的旋转门才能使QAOA在量子硬件上最佳地运行。我们还提出了分析结果,这些结果解释了一些定性景观特征,这些特征在数值上观察到。

We report on the energy-expectation-value landscapes produced by the single-layer ($p=1$) Quantum Approximate Optimization Algorithm (QAOA) when being used to solve Ising problems. The landscapes are obtained using an analytical formula that we derive. The formula allows us to predict the landscape for any given Ising problem instance and consequently predict the optimal QAOA parameters for heuristically solving that instance using the single-layer QAOA. We have validated our analytical formula by showing that it accurately reproduces the landscapes published in recent experimental reports. We then applied our methods to address the question: how well is the single-layer QAOA able to solve large benchmark problem instances? We used our analytical formula to calculate the optimal energy-expectation values for benchmark MAX-CUT problems containing up to $7\,000$ vertices and $41\,459$ edges. We also calculated the optimal energy expectations for general Ising problems with up to $100\,000$ vertices and $150\,000$ edges. Our results provide an estimate for how well the single-layer QAOA may work when run on a quantum computer with thousands of qubits. In addition to providing performance estimates when optimal angles are used, we are able to use our analytical results to investigate the difficulties one may encounter when running the QAOA in practice for different classes of Ising instances. We find that depending on the parameters of the Ising Hamiltonian, the expectation-value landscapes can be rather complex, with sharp features that necessitate highly accurate rotation gates in order for the QAOA to be run optimally on quantum hardware. We also present analytical results that explain some of the qualitative landscape features that are observed numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源