论文标题
受控的马尔可夫量子系统中的可及性:操作者理论方法
Reachability in Controlled Markovian Quantum Systems: An Operator-Theoretic Approach
论文作者
论文摘要
在量子系统理论中,基本问题之一归结为:鉴于初始状态,所讨论的动态系统可以达到哪些最终状态?演化在双线性控制系统的框架中配制,应由不可避免的哈密顿漂移术语支配,有限的许多控制哈密顿量允许(至少)分段恒定控制振幅(至少)kossakakowski-lindblad形式(可能是bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-bang-blad形式)。 现在,假设有限维系统可切换耦合到任意温度的热浴中,可及性的核心问题归结为研究标准单纯形中的研究点,可与两种类型的控件相融合,这些控制点可以使用:单纯化的置换:散布在散布中,而散布的单参数分析表分别是单参数分子。我们说明了核心问题的解决方案如何与原始受控的马尔可夫量子系统的可触及集有关。这使我们能够证明,对于全局以及局部可切换耦合到温度零浴,一个人可以生成从每个初始状态到任意精度的每个量子状态。此外,由于我们在d-majorization上的结果,我们提出了非零温度的包含。 然后,我们考虑在由控件扩展的Unital Kossakowski-Lindblad主方程之后,无限二维开放量子动态系统。在这里,汉密尔顿漂移可以是任意的,有限的许多控制汉密尔顿人是有界的,并且可切换噪声项是由单个紧凑型正常运算符生成的。通过我们的新的多数化结果,我们表明,这种双线性量子控制系统允许大约到达以最初量为主要状态的任何目标状态,因为到目前为止仅在有限维模拟中才知道。
In quantum systems theory one of the fundamental problems boils down to: Given an initial state, which final states can be reached by the dynamic system in question? Formulated in the framework of bilinear control systems, the evolution shall be governed by an inevitable Hamiltonian drift term, finitely many control Hamiltonians allowing for (at least) piecewise constant control amplitudes, plus a (possibly bang-bang switchable) noise term in Kossakowski-Lindblad form. Now assuming switchable coupling of finite-dimensional systems to a thermal bath of arbitrary temperature, the core problem of reachability boils down to studying points in the standard simplex amenable to two types of controls that can be used interleaved: Permutations within the simplex, and contractions by a dissipative one-parameter semigroup. We illustrate how the solutions of the core problem pertain to the reachable set of the original controlled Markovian quantum system. This allows us to show that for global as well as local switchable coupling to a temperature-zero bath one can generate every quantum state from every initial state up to arbitrary precision. Moreover we present an inclusion for non-zero temperatures as a consequence of our results on d-majorization. Then we consider infinite-dimensional open quantum-dynamical systems following a unital Kossakowski-Lindblad master equation extended by controls. Here the drift Hamiltonian can be arbitrary, the finitely many control Hamiltonians are bounded, and the switchable noise term is generated by a single compact normal operator. Via new majorization results of ours, we show that such bilinear quantum control systems allow to approximately reach any target state majorized by the initial one, as up to now only has been known in finite-dimensional analogues.