论文标题

预测基于深神经网络的短期到长期记忆的过渡

Predicting the Transition from Short-term to Long-term Memory based on Deep Neural Network

论文作者

Shin, Gi-Hwan, Kweon, Young-Seok, Lee, Minji

论文摘要

记忆是基于经验的人们日常生活中的重要元素。到目前为止,许多研究已经分析了编码时的脑电图(EEG)信号以预测后来的记忆项目,但是很少有研究仅使用成功的短期记忆来预测长期记忆。因此,我们旨在使用深层神经网络预测长期记忆。在特定的情况下,计算了短期记忆中记忆项目的EEG信号的光谱功能,并将其输入到多层感知器(MLP)和卷积神经网络(CNN)分类器中,以预测长期记忆。 17名参与者执行了视觉空间内存任务,该任务由图片和位置存储器组成,按照编码,即时检索(短期内存)和延迟检索(长期内存)的顺序。我们应用了一项受试者的交叉验证来评估预测模型。结果,图片存储器在CNN上显示出最高的KAPPA值为0.19,位置存储器在MLP中的最高KAPPA值为0.32。这些结果表明,可以在短期记忆期间通过测得的脑电图信号来预测长期记忆,从而提高学习效率并帮助患有记忆和认知障碍的人。

Memory is an essential element in people's daily life based on experience. So far, many studies have analyzed electroencephalogram (EEG) signals at encoding to predict later remembered items, but few studies have predicted long-term memory only with EEG signals of successful short-term memory. Therefore, we aim to predict long-term memory using deep neural networks. In specific, the spectral power of the EEG signals of remembered items in short-term memory was calculated and inputted to the multilayer perceptron (MLP) and convolutional neural network (CNN) classifiers to predict long-term memory. Seventeen participants performed visuo-spatial memory task consisting of picture and location memory in the order of encoding, immediate retrieval (short-term memory), and delayed retrieval (long-term memory). We applied leave-one-subject-out cross-validation to evaluate the predictive models. As a result, the picture memory showed the highest kappa-value of 0.19 on CNN, and location memory showed the highest kappa-value of 0.32 in MLP. These results showed that long-term memory can be predicted with measured EEG signals during short-term memory, which improves learning efficiency and helps people with memory and cognitive impairments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源