论文标题
博学的封闭迭代收缩阈值算法用于光热超级分辨率成像
Learned Block Iterative Shrinkage Thresholding Algorithm for Photothermal Super Resolution Imaging
论文作者
论文摘要
块状正则化已经在主动热成像中众所周知,用于多个基于测量的逆问题。该方法的主要瓶颈是每个实验不同的正则化参数的选择。为了避免耗时的手动选择正则化参数,我们使用迭代算法提出了一种学习的块 - 宽带优化方法,该算法将其展开到深神经网络中。更确切地说,我们显示了使用能够学习正则化参数的选择的学习块迭代收缩阈值算法的好处。此外,该算法可以确定合适的权重矩阵来解决基本的反问题。因此,在本文中,我们介绍了算法,并将其与使用合成生成的测试数据和来自主动热力表的实验测试数据进行缺陷重建进行比较。我们的结果表明,与不学习相比,使用学到的块SPARSE优化方法为少量固定数量的迭代提供了较小的归一化均方误差。因此,这种新方法可以提高收敛速度,并且只需要一些迭代即可在光热超级分辨率成像中产生准确的缺陷重建。
Block-sparse regularization is already well-known in active thermal imaging and is used for multiple measurement based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. To avoid time-consuming manually selected regularization parameter, we propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network. More precisely, we show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters. In addition, this algorithm enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present the algorithm and compare it with state of the art block iterative shrinkage thresholding using synthetically generated test data and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations than without learning. Thus, this new approach allows to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super resolution imaging.