论文标题
非绝热量子流体动力学中的Bohmion方法
The bohmion method in nonadiabatic quantum hydrodynamics
论文作者
论文摘要
从分子波函数的确切分解开始,本文介绍了最近提出的Bohmion方法的非绝热分子动力学的数值实现的结果。在量子流体动力学的背景下,我们引入了一个正规化的核BOHM电位,该潜在的解决方案包括$δ$辅导的火车,这些列车提供了对流体动力流动路径的有限维度采样。 Bohmion方法从其潜在的变分结构中继承了所有基本的保护定律,并捕获了电子脱位。在回顾了一般理论之后,该方法应用于著名的塔利模型,在此用作基准问题。在目前的研究案例中,我们表明,新方法可以准确地再现电子脱位和核总体动力学。
Starting with the exact factorization of the molecular wavefunction, this paper presents the results from the numerical implementation in nonadiabatic molecular dynamics of the recently proposed bohmion method. Within the context of quantum hydrodynamics, we introduce a regularized nuclear Bohm potential admitting solutions comprising a train of $δ$-functions which provide a finite-dimensional sampling of the hydrodynamic flow paths. The bohmion method inherits all the basic conservation laws from its underlying variational structure and captures electronic decoherence. After reviewing the general theory, the method is applied to the well-known Tully models, which are used here as benchmark problems. In the present case of study, we show that the new method accurately reproduces both electronic decoherence and nuclear population dynamics.