论文标题
PSGCNET:遥感图像中密度对象计数的金字塔量表和全球上下文引导网络
PSGCNet: A Pyramidal Scale and Global Context Guided Network for Dense Object Counting in Remote Sensing Images
论文作者
论文摘要
旨在计算图像中准确数量的对象数量的对象计数吸引了越来越多的关注。但是,诸如大规模变化,复杂的背景干扰和非均匀密度分布之类的挑战极大地限制了计数准确性,尤其是在遥感图像中引人注目。为了减轻上述问题,本文提出了一个新颖的框架,用于在遥感图像中进行密集的对象计数,该框架结合了金字塔尺度模块(PSM)和一个全球上下文模块(GCM),该模块(GCM)称为PSGCNET,其中PSM用于适应性地捕获多尺度信息,并指导PSM从PSM中选择合适的量表。此外,利用从贝叶斯人和计数损失(BCL)改善的可靠监督方式来学习密度概率,然后在每次注释时计算计数期望。它可以在一定程度上缓解非均匀密度分布。在四个遥感计数数据集上进行的广泛实验证明了所提出的方法的有效性及其优势与最先进的方法相比。此外,在四个常用的人群计数数据集上扩展了实验,进一步验证了模型的概括能力。代码可在https://github.com/gaoguangshuai/psgcnet上找到。
Object counting, which aims to count the accurate number of object instances in images, has been attracting more and more attention. However, challenges such as large scale variation, complex background interference, and non-uniform density distribution greatly limit the counting accuracy, particularly striking in remote sensing imagery. To mitigate the above issues, this paper proposes a novel framework for dense object counting in remote sensing images, which incorporates a pyramidal scale module (PSM) and a global context module (GCM), dubbed PSGCNet, where PSM is used to adaptively capture multi-scale information and GCM is to guide the model to select suitable scales generated from PSM. Moreover, a reliable supervision manner improved from Bayesian and Counting loss (BCL) is utilized to learn the density probability and then compute the count expectation at each annotation. It can relieve non-uniform density distribution to a certain extent. Extensive experiments on four remote sensing counting datasets demonstrate the effectiveness of the proposed method and the superiority of it compared with state-of-the-arts. Additionally, experiments extended on four commonly used crowd counting datasets further validate the generalization ability of the model. Code is available at https://github.com/gaoguangshuai/PSGCNet.