论文标题

自我监督的深度学习阅读活动分类

Self-supervised Deep Learning for Reading Activity Classification

论文作者

Islam, Md. Rabiul, Sakamoto, Shuji, Yamada, Yoshihiro, Vargo, Andrew, Iwata, Motoi, Iwamura, Masakazu, Kise, Koichi

论文摘要

阅读分析可以提供有关用户信心和习惯的重要信息,并可用于构建反馈以改善用户的阅读行为。缺乏标记的数据抑制了完全监督深度学习(DL)进行自动阅读分析的有效应用。在本文中,我们提出了一种自我监督的DL方法,用于阅读分析并在两个分类任务上进行评估。我们首先在使用电学摄影(EOG)眼镜数据集的四级分类任务上评估了提议的自我监督的DL方法,然后使用眼神传播数据集对多项选择问题答案(MCQ)的答案进行置信度估算的两类分类任务进行评估。完全监督的DL和支持向量机(SVM)用于比较提出的自我监管的DL方法的性能。结果表明,对于这两个任务,提出的自我监督的DL方法优于全面监督的DL和SVM,尤其是在培训数据稀缺时。该结果表明,提出的自我监督的DL方法是阅读分析任务的卓越选择。这项研究的结果对于告知自动阅读分析平台的设计和实施至关重要。

Reading analysis can give important information about a user's confidence and habits and can be used to construct feedback to improve a user's reading behavior. A lack of labeled data inhibits the effective application of fully-supervised Deep Learning (DL) for automatic reading analysis. In this paper, we propose a self-supervised DL method for reading analysis and evaluate it on two classification tasks. We first evaluate the proposed self-supervised DL method on a four-class classification task on reading detection using electrooculography (EOG) glasses datasets, followed by an evaluation of a two-class classification task of confidence estimation on answers of multiple-choice questions (MCQs) using eye-tracking datasets. Fully-supervised DL and support vector machines (SVMs) are used to compare the performance of the proposed self-supervised DL method. The results show that the proposed self-supervised DL method is superior to the fully-supervised DL and SVM for both tasks, especially when training data is scarce. This result indicates that the proposed self-supervised DL method is the superior choice for reading analysis tasks. The results of this study are important for informing the design and implementation of automatic reading analysis platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源