论文标题
通过拓扑量子场效应克服晶体管中的Boltzmann的暴政
Overcoming Boltzmann's Tyranny in a Transistor via the Topological Quantum Field Effect
论文作者
论文摘要
子阈值摆动是确定晶体管在低功率应用(例如开关)中的操作的基本关键参数。它决定了用于打开和关闭设备的栅极电容引起的耗散的分数,在常规的晶体管中,它受到鲍尔茨曼对KTLN(10)/Q的暴政的限制,或每十年60 mV。在这里,我们证明了拓扑晶体管的子阈值摇摆,其中通过电场开关通过拓扑相过渡来实现传导,可以通过在非相互作用系统中大幅度降低,通过调节Rashba旋转轨道的相互作用,通过顶门电场调节Rashba旋转轨道的相互作用。我们将其称为拓扑量子场效应,将晶体管视为拓扑量子场效应晶体管(TQFET)。通过开发带有蜂窝晶格的量子自旋材料材料的一般理论框架,我们明确表明,与当前可用的材料中的Boltzmann的限制相比,Rashba的相互作用可以将亚阈值的互动降低超过25%,但是没有任何基本下限,这一发现可以指导将来的材料设计和引导拓扑量子设备的工程。
The sub-threshold swing is the fundamental critical parameter determining the operation of a transistor in low-power applications such as switches. It determines the fraction of dissipation due to the gate capacitance used for turning the device on and off, and in a conventional transistor it is limited by Boltzmann's tyranny to kTln(10)/q, or 60 mV per decade. Here, we demonstrate that the sub-threshold swing of a topological transistor, in which conduction is enabled by a topological phase transition via electric field switching, can be sizably reduced in a non-interacting system by modulating the Rashba spin-orbit interaction via a top-gate electric field. We refer to this as the Topological Quantum Field Effect and to the transistor as a Topological Quantum Field Effect transistor (TQFET). By developing a general theoretical framework for quantum spin Hall materials with honeycomb lattices we explicitly show that the Rashba interaction can reduce the sub-threshold swing by more than 25% compared to Boltzmann's limit in currently available materials, but without any fundamental lower bound, a discovery that can guide future materials design and steer the engineering of topological quantum devices.