论文标题
IHASHNET:基于高效的多指数哈希的虹膜哈希网络
IHashNet: Iris Hashing Network based on efficient multi-index hashing
论文作者
论文摘要
在当今世界,大规模的生物特征部署无处不在。但是,尽管生物识别系统的准确性很高,但它们的计算效率随着数据库大小的增加而大大降低。因此,索引它们至关重要。理想的索引方案需要生成保留受试者内相似性以及主体间差异的代码。在这里,在本文中,我们提出了使用与索引结构兼容的IRIS bar代码(IBC)二进制的实价深虹膜特征(IBC)的虹膜索引方案。首先,为了提取强大的虹膜功能,我们采用了一个网络,利用序数过滤和学习其非线性组合的领域知识。后来这些实用值的功能被化为二元。最后,为了索引IRIS数据集,我们提出了一种可以将二进制功能转换为与多数指数哈希方案兼容的改进功能的损失。此损耗函数确保锤距在所有连续的分离子串之间平均分布。据我们所知,这是虹膜索引域中的第一部作品,它提出了端到端的虹膜索引结构。提出了四个数据集的实验结果,以描述所提出方法的功效。
Massive biometric deployments are pervasive in today's world. But despite the high accuracy of biometric systems, their computational efficiency degrades drastically with an increase in the database size. Thus, it is essential to index them. An ideal indexing scheme needs to generate codes that preserve the intra-subject similarity as well as inter-subject dissimilarity. Here, in this paper, we propose an iris indexing scheme using real-valued deep iris features binarized to iris bar codes (IBC) compatible with the indexing structure. Firstly, for extracting robust iris features, we have designed a network utilizing the domain knowledge of ordinal filtering and learning their nonlinear combinations. Later these real-valued features are binarized. Finally, for indexing the iris dataset, we have proposed a loss that can transform the binary feature into an improved feature compatible with the Multi-Index Hashing scheme. This loss function ensures the hamming distance equally distributed among all the contiguous disjoint sub-strings. To the best of our knowledge, this is the first work in the iris indexing domain that presents an end-to-end iris indexing structure. Experimental results on four datasets are presented to depict the efficacy of the proposed approach.