论文标题
在黑洞光线的半径上的下限
Lower bound on the radii of black-hole photonspheres
论文作者
论文摘要
黑洞周围的封闭式循环大地测量学的存在是总体相对论最有趣的预测之一。最近有人猜想,黑洞光光的半径是从下面的界限,由简单的关系$ r _ {\ text {ph}} \ geq {3 \ over2} r _ {\ text {h} {h}} $,其中$ r _ {\ r _ {\ text {我们在这里证明了这种猜想对球形对称的毛状黑洞配置的有效性,其径向压力函数$ p \ equiv | r^3p | $单调减小。
The existence of closed null circular geodesics around black holes is one of the most intriguing predictions of general relativity. It has recently been conjectured that the radii of black-hole photonspheres are bounded from below by the simple relation $r_{\text{ph}}\geq {3\over2}r_{\text{H}}$, where $r_{\text{H}}$ is the radius of the outer black-hole horizon. We here prove the validity of this conjecture for spherically symmetric hairy black-hole configurations whose radial pressure function $P\equiv |r^3p|$ decreases monotonically.